Warm Reception? Halogenated BPA Flame Retardants and PPARγ Activation
نویسنده
چکیده
Children are particularly susceptible to the health effects of air pollution because they spend more time outdoors, have higher respiratory rates, and breathe in a greater volume of air relative to their body weights. Babies may be especially sensitive to the effects of air pollution because their immune, respiratory, and central nervous systems are not fully developed. To date, infants’ respiratory responses to air pollution have been studied much less extensively than those of older children. A new study now links ambient air pollution to an increased risk for apnea (prolonged pauses in breathing) and bradycardia (decreases in heart rate) in babies at high risk for these conditions [EHP 119(9):1321– 1327; Peel et al.]. The study involved 4,277 infants living in the Atlanta area (about 80 square miles) between 1998 and 2002 whose heart rates and respiration were recorded on home cardiorespiratory monitors. Most of the infants were being monitored because of previous apnea events related to premature birth; others, including some full-term infants, were being monitored for reasons such as gastroesophageal reflux disease. Concentrations of ground-level ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, oxygenated hydrocarbons, and particulate matter were measured at a centrally located monitoring site. The team of researchers documented 8,960 apnea events (in which the child stopped breathing for at least 20 seconds) and 29,450 brady cardia events (in which the child’s heart rate fell below a value determined by his or her age and prematurity status) recorded on the monitors. They examined associations between these events and the 2-day average levels of air pollution, recorded the same day as and the day before each event. The researchers found significant associations between bradycardia and increases in 8-hour levels of ozone and 1-hour levels of nitrogen dioxide. The relationship between ozone and apnea was similar but not statistically significant. In general, stronger associations were observed for full-term infants with normal birth weights than for premature infants with low birth weights—a surprising but not unprecedented finding. There also was an association between apnea events and increased concentrations of organic carbon in fine particulate matter for full-term, normal-birth-weight infants. These findings are consistent with previous studies linking air pollution with respiratory symptoms, related hospital admissions, and increased mortality in infants. Although the underlying causes of apnea and bradycardia are unclear, some evidence suggests that immaturity in the autonomic control of the nervous and/or respiratory systems may be involved, which makes a link with increased vulnerability to the effects of air pollution plausible.
منابع مشابه
Peroxisome Proliferator-Activated Receptor γ Is a Target for Halogenated Analogs of Bisphenol A
BACKGROUND The occurrence of halogenated analogs of the xenoestrogen bisphenol A (BPA) has been recently demonstrated both in environmental and human samples. These analogs include brominated [e.g., tetrabromobisphenol A (TBBPA)] and chlorinated [e.g., tetrachlorobisphenol A (TCBPA)] bisphenols, which are both flame retardants. Because of their structural homology with BPA, such chemicals are c...
متن کاملCharacterization of novel ligands of ERα, Erβ, and PPARγ: the case of halogenated bisphenol A and their conjugated metabolites.
The capability of the flame retardants tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) to activate peroxysome proliferator-activated receptors (PPARs) α, β, and γ and estrogen receptors (ERs) α and β has been recently investigated, but the activity of their biotransformation products and of their lower molecular weight analogues formed in the environment remains unexplored. The...
متن کاملCharacterizing the Peroxisome Proliferator-Activated Receptor (PPARγ) Ligand Binding Potential of Several Major Flame Retardants, Their Metabolites, and Chemical Mixtures in House Dust
BACKGROUND Accumulating evidence has shown that some environmental contaminants can alter adipogenesis and act as obesogens. Many of these contaminants act via the activation of the peroxisome proliferator-activated receptor γ (PPARγ) nuclear receptor. OBJECTIVES Our goal was to determine the PPARγ ligand binding potency of several major flame retardants, including polybrominated diphenyl eth...
متن کاملHalogenated bisphenol-A analogs act as obesogens in zebrafish larvae (Danio rerio).
Obesity has increased dramatically over the past decades, reaching epidemic proportions. The reasons are likely multifactorial. One of the suggested causes is the accelerated exposure to obesity-inducing chemicals (obesogens). However, out of the tens of thousands of industrial chemicals humans are exposed to, very few have been tested for their obesogenic potential, mostly due to the limited a...
متن کاملLigand Binding and Activation of PPARγ by Firemaster® 550: Effects on Adipogenesis and Osteogenesis in Vitro
BACKGROUND The use of alternative flame retardants has increased since the phase out of pentabromodiphenyl ethers (pentaBDEs). One alternative, Firemaster® 550 (FM550), induces obesity in rats. Triphenyl phosphate (TPP), a component of FM550, has a structure similar to that of organotins, which are obesogenic in rodents. OBJECTIVES We tested the hypothesis that components of FM550 are biologi...
متن کاملA Novel Non-Halogenated Flame Retardant for Composite Materials
Flame retardants, such as inorganic fillers or halogenated resins, are incorporated into composites either as additives or reactive materials. In order to improve processability and mechanical properties, as well as reduce smoke toxicity, a method is being developed to introduce highly effective, inexpensive flame retardant materials into thermoset resins. Superabsorbent polymers (SAP) can be l...
متن کامل